Common variables
Let X
be the input-output matrix, w
the
wage vector, c
the household consumption vector,
d
the total final demand vector, and e
the
employment coefficient.
library(leontief)
X <- transaction_matrix
w <- wage_demand_matrix[, "wage"]
c <- wage_demand_matrix[, "household_consumption"]
d <- wage_demand_matrix[, "final_total_demand"]
e <- employment_matrix[, "employees"]
Output allocation matrix
Let B
be the output allocation matrix.
B <- output_allocation(X, d)
rownames(B) <- rownames(X)
colnames(B) <- rownames(X)
kable(B)
agriculture_fishing |
0.147 |
0.000 |
0.524 |
0.002 |
0.001 |
0.020 |
0.000 |
0.000 |
0.000 |
0.002 |
0.003 |
0.002 |
mining |
0.003 |
0.071 |
0.054 |
0.001 |
0.004 |
0.002 |
0.001 |
0.001 |
0.000 |
0.002 |
0.001 |
0.000 |
manufacturing_industry |
0.044 |
0.029 |
0.137 |
0.010 |
0.086 |
0.050 |
0.035 |
0.002 |
0.000 |
0.012 |
0.021 |
0.005 |
electricity_gas_water |
0.008 |
0.153 |
0.138 |
0.308 |
0.009 |
0.044 |
0.024 |
0.006 |
0.008 |
0.015 |
0.031 |
0.033 |
construction |
0.001 |
0.001 |
0.002 |
0.004 |
0.123 |
0.012 |
0.007 |
0.001 |
0.077 |
0.004 |
0.011 |
0.012 |
retail_hotels_restaurants |
0.018 |
0.024 |
0.058 |
0.007 |
0.037 |
0.070 |
0.050 |
0.006 |
0.001 |
0.022 |
0.028 |
0.005 |
transport_communications_information |
0.015 |
0.034 |
0.100 |
0.010 |
0.015 |
0.113 |
0.144 |
0.017 |
0.002 |
0.035 |
0.015 |
0.013 |
financial_services |
0.029 |
0.013 |
0.064 |
0.015 |
0.053 |
0.098 |
0.047 |
0.109 |
0.044 |
0.036 |
0.017 |
0.002 |
real_estate |
0.003 |
0.006 |
0.019 |
0.002 |
0.005 |
0.115 |
0.033 |
0.009 |
0.014 |
0.040 |
0.038 |
0.006 |
business_services |
0.015 |
0.111 |
0.142 |
0.018 |
0.055 |
0.133 |
0.090 |
0.047 |
0.011 |
0.123 |
0.041 |
0.020 |
personal_services |
0.000 |
0.002 |
0.006 |
0.000 |
0.001 |
0.005 |
0.007 |
0.002 |
0.000 |
0.003 |
0.034 |
0.001 |
public_administration |
0.002 |
0.003 |
0.009 |
0.002 |
0.000 |
0.013 |
0.009 |
0.001 |
0.000 |
0.002 |
0.004 |
0.003 |
Leontief inverse matrix
Let I
be the identity matrix. Leontief inverse is the
same as solving I - A
.
L <- leontief_inverse(A)
rownames(L) <- rownames(X)
colnames(L) <- rownames(X)
kable(L)
agriculture_fishing |
1.214 |
0.014 |
0.181 |
0.021 |
0.043 |
0.029 |
0.017 |
0.005 |
0.007 |
0.009 |
0.014 |
0.011 |
mining |
0.020 |
1.080 |
0.042 |
0.007 |
0.016 |
0.007 |
0.005 |
0.003 |
0.003 |
0.004 |
0.004 |
0.003 |
manufacturing_industry |
0.283 |
0.088 |
1.225 |
0.106 |
0.286 |
0.128 |
0.106 |
0.029 |
0.043 |
0.051 |
0.077 |
0.055 |
electricity_gas_water |
0.030 |
0.094 |
0.059 |
1.454 |
0.025 |
0.033 |
0.023 |
0.013 |
0.013 |
0.016 |
0.027 |
0.055 |
construction |
0.007 |
0.005 |
0.007 |
0.018 |
1.145 |
0.022 |
0.013 |
0.006 |
0.151 |
0.011 |
0.019 |
0.035 |
retail_hotels_restaurants |
0.087 |
0.048 |
0.074 |
0.050 |
0.090 |
1.100 |
0.085 |
0.029 |
0.019 |
0.048 |
0.055 |
0.032 |
transport_communications_information |
0.090 |
0.066 |
0.110 |
0.067 |
0.067 |
0.150 |
1.195 |
0.067 |
0.018 |
0.071 |
0.041 |
0.059 |
financial_services |
0.052 |
0.018 |
0.037 |
0.039 |
0.051 |
0.058 |
0.037 |
1.129 |
0.053 |
0.031 |
0.019 |
0.011 |
real_estate |
0.014 |
0.011 |
0.016 |
0.010 |
0.014 |
0.061 |
0.027 |
0.017 |
1.018 |
0.032 |
0.030 |
0.014 |
business_services |
0.087 |
0.137 |
0.126 |
0.094 |
0.120 |
0.152 |
0.124 |
0.129 |
0.045 |
1.162 |
0.070 |
0.073 |
personal_services |
0.003 |
0.003 |
0.005 |
0.003 |
0.003 |
0.006 |
0.008 |
0.005 |
0.001 |
0.004 |
1.036 |
0.004 |
public_administration |
0.003 |
0.002 |
0.003 |
0.003 |
0.001 |
0.005 |
0.004 |
0.001 |
0.001 |
0.002 |
0.002 |
1.004 |
Equilibrium output
The required output is given by L * d
.
eq <- equilibrium_output(L, d)
rownames(eq) <- rownames(X)
colnames(eq) <- "output"
kable(eq)
agriculture_fishing |
25832 |
mining |
31674 |
manufacturing_industry |
81363 |
electricity_gas_water |
23428 |
construction |
28817 |
retail_hotels_restaurants |
47168 |
transport_communications_information |
50606 |
financial_services |
21588 |
real_estate |
18686 |
business_services |
51363 |
personal_services |
23148 |
public_administration |
9746 |
Multipliers
Output multiplier
The output multiplier is the column sum of L
.
out <- output_multiplier(L)
Income multiplier
Let W
be a matrix where each column is w
with the same dimension as L
. The income multiplier is the
column sum of the element-wise multiplication of L
and
W
element-wise divided by w
.
inc <- income_multiplier(L, w / d)
Employment multiplier
Let E
be a matrix where each column is e
with the same dimension as L
. The employment multiplier is
the column sum of the element-wise multiplication of L
and
E
element-wise divided by e
.
emp <- employment_multiplier(L, e / d)
Summary of multipliers
sm <- round(cbind(out, inc, emp), 4)
rownames(sm) <- rownames(X)
colnames(sm) <- c("output_multiplier", "income_multiplier", "employment_multiplier")
kable(sm)
agriculture_fishing |
1.89 |
0.291 |
94.3 |
mining |
1.57 |
0.187 |
21.4 |
manufacturing_industry |
1.88 |
0.250 |
46.2 |
electricity_gas_water |
1.87 |
0.177 |
22.3 |
construction |
1.86 |
0.400 |
55.3 |
retail_hotels_restaurants |
1.75 |
0.393 |
78.3 |
transport_communications_information |
1.65 |
0.278 |
41.3 |
financial_services |
1.44 |
0.354 |
24.9 |
real_estate |
1.37 |
0.109 |
14.5 |
business_services |
1.44 |
0.393 |
29.1 |
personal_services |
1.40 |
0.639 |
90.8 |
public_administration |
1.36 |
0.607 |
53.9 |
Linkages
Backward and forward linkage
bl <- backward_linkage(A)
fl <- forward_linkage(A)
bfl <- cbind(bl, fl)
rownames(bfl) <- rownames(X)
colnames(bfl) <- c("backward_linkage", "forward_linkage")
kable(bfl)
agriculture_fishing |
0.496 |
0.288 |
mining |
0.343 |
0.123 |
manufacturing_industry |
0.506 |
0.869 |
electricity_gas_water |
0.486 |
0.491 |
construction |
0.487 |
0.322 |
retail_hotels_restaurants |
0.462 |
0.424 |
transport_communications_information |
0.393 |
0.561 |
financial_services |
0.288 |
0.330 |
real_estate |
0.217 |
0.159 |
business_services |
0.283 |
0.770 |
personal_services |
0.243 |
0.059 |
public_administration |
0.211 |
0.019 |
Power of dispersion
bl <- power_dispersion(L)
bl_cv <- power_dispersion_cv(L)
bl_t <- cbind(bl, bl_cv)
rownames(bl_t) <- rownames(X)
colnames(bl_t) <- c("power_dispersion", "power_dispersion_cv")
kable(bl_t)
agriculture_fishing |
1.165 |
2.14 |
mining |
0.965 |
2.40 |
manufacturing_industry |
1.161 |
2.10 |
electricity_gas_water |
1.154 |
2.59 |
construction |
1.147 |
2.07 |
retail_hotels_restaurants |
1.079 |
2.05 |
transport_communications_information |
1.014 |
2.38 |
financial_services |
0.884 |
2.68 |
real_estate |
0.845 |
2.60 |
business_services |
0.888 |
2.64 |
personal_services |
0.860 |
2.65 |
public_administration |
0.836 |
2.66 |
Sensitivity of dispersion
sl <- sensitivity_dispersion(L)
sl_cv <- sensitivity_dispersion_cv(L)
sl_t <- cbind(sl, sl_cv)
rownames(sl_t) <- rownames(X)
colnames(sl_t) <- c("power_dispersion", "power_dispersion_cv")
kable(sl_t)
agriculture_fishing |
0.965 |
2.60 |
mining |
0.736 |
3.12 |
manufacturing_industry |
1.526 |
1.54 |
electricity_gas_water |
1.136 |
2.63 |
construction |
0.887 |
2.68 |
retail_hotels_restaurants |
1.058 |
2.09 |
transport_communications_information |
1.234 |
1.94 |
financial_services |
0.947 |
2.52 |
real_estate |
0.779 |
2.84 |
business_services |
1.430 |
1.61 |
personal_services |
0.667 |
3.39 |
public_administration |
0.636 |
3.46 |
Multiplier product matrix
mp <- multiplier_product_matrix(L)
rownames(mp) <- rownames(X)
colnames(mp) <- rownames(X)
kable(mp)
agriculture_fishing |
0.152 |
0.116 |
0.240 |
0.179 |
0.140 |
0.167 |
0.194 |
0.149 |
0.123 |
0.225 |
0.105 |
0.100 |
mining |
0.126 |
0.096 |
0.199 |
0.148 |
0.116 |
0.138 |
0.161 |
0.124 |
0.102 |
0.187 |
0.087 |
0.083 |
manufacturing_industry |
0.151 |
0.116 |
0.240 |
0.178 |
0.139 |
0.166 |
0.194 |
0.149 |
0.122 |
0.225 |
0.105 |
0.100 |
electricity_gas_water |
0.151 |
0.115 |
0.238 |
0.177 |
0.138 |
0.165 |
0.192 |
0.148 |
0.122 |
0.223 |
0.104 |
0.099 |
construction |
0.150 |
0.114 |
0.237 |
0.176 |
0.138 |
0.164 |
0.191 |
0.147 |
0.121 |
0.222 |
0.103 |
0.099 |
retail_hotels_restaurants |
0.141 |
0.107 |
0.223 |
0.166 |
0.129 |
0.154 |
0.180 |
0.138 |
0.114 |
0.209 |
0.097 |
0.093 |
transport_communications_information |
0.132 |
0.101 |
0.209 |
0.156 |
0.122 |
0.145 |
0.169 |
0.130 |
0.107 |
0.196 |
0.091 |
0.087 |
financial_services |
0.115 |
0.088 |
0.182 |
0.136 |
0.106 |
0.126 |
0.148 |
0.113 |
0.093 |
0.171 |
0.080 |
0.076 |
real_estate |
0.110 |
0.084 |
0.174 |
0.130 |
0.101 |
0.121 |
0.141 |
0.108 |
0.089 |
0.163 |
0.076 |
0.073 |
business_services |
0.116 |
0.088 |
0.183 |
0.136 |
0.107 |
0.127 |
0.148 |
0.114 |
0.094 |
0.172 |
0.080 |
0.076 |
personal_services |
0.112 |
0.086 |
0.177 |
0.132 |
0.103 |
0.123 |
0.143 |
0.110 |
0.091 |
0.166 |
0.078 |
0.074 |
public_administration |
0.109 |
0.083 |
0.172 |
0.128 |
0.100 |
0.120 |
0.139 |
0.107 |
0.088 |
0.162 |
0.075 |
0.072 |
Induced effects (labor/consumption)
bli <- backward_linkage(A_aug)
fli <- forward_linkage(A_aug)
bfli <- cbind(bli, fli)
rownames(bfli) <- c(rownames(X), "wage")
# wie = with induced effect
colnames(bfli) <- c("backward_linkage_wie", "forward_linkage_wie")
kable(bfli)
agriculture_fishing |
0.643 |
0.398 |
mining |
0.433 |
0.123 |
manufacturing_industry |
0.609 |
1.130 |
electricity_gas_water |
0.550 |
0.702 |
construction |
0.728 |
0.323 |
retail_hotels_restaurants |
0.713 |
0.947 |
transport_communications_information |
0.547 |
0.872 |
financial_services |
0.543 |
0.768 |
real_estate |
0.247 |
0.858 |
business_services |
0.582 |
0.821 |
personal_services |
0.797 |
0.510 |
public_administration |
0.752 |
0.053 |
wage |
3.090 |
2.729 |
References
Schuschny, Andres Ricardo. Topicos sobre el modelo de
insumo-producto: teoria y aplicaciones. Cepal, 2005.
Pino Arriagada, Andres y Fuentes Navarro, Silvia. Derivacion y
analisis de los multiplicadores de empleo para la economia
nacional. Universidad del Bio-Bio, 2018.