This vignette is adapted from the official Armadillo documentation.
The linspace()
function generates a vector of linearly
spaced values from start
to end
(it includes
end
). The arguments can be start, end
or
start, end, N
, where N
is optional and
indicates the number of elements in the vector (N
is 100 by
default).
The usage is:
For N = 1
, the generated vector will have a single
element equal to end.
The logspace()
function generates a vector of
logarithmically spaced values from 10^start
to
10^end
(it includes 10^end
). The arguments can
be start, end
or start, end, N
, where
N
is optional and indicates the number of elements in the
vector (N
is 50 by default).
The usage is:
The regspace()
function generates a vector of regularly
spaced values
start, start + delta, start + 2*delta, ..., start + M * delta
where M
is M = floor((end - start) / delta)
.
The arguments can be start, end
or
start, delta, end
, where delta
is optional
(delta = 1
if start <= end
and
delta = -1
if start > end
by default).
The usage is:
vec v = regspace(start, end)
vec v = regspace(start, delta, end)
vector_type v = regspace<vector_type>(start, end)
vector_type v = regspace<vector_type>(start, delta, end)
The output vector will be empty if any of the following conditions are met:
start < end
and delta < 0
start > end
and delta > 0
delta = 0
regspace()
to specify ranges for contiguous
submatrix views, use span()
instead.The randperm()
function generates a vector of
permutation of integers from 0
to N-1
. The
argument can be empty, N
, or N, M
, where
N
(N = 10
by default) is the range of integers
and M
(M = N
by default) is the length of the
output.
The usage is:
The eye()
function generates a matrix of size
n x m
. The argument can be n_rows, n_cols
or
size(X)
. When n_rows = n_cols
, the output is
an identity matrix.
The usage is:
The ones()
function generates a vector, matrix or cube.
The arguments can be n_elem
, n_rows, n_cols
,
n_rows, n_cols, n_slices
, or size(X)
. The
The usage is:
vector_type v = ones<vector_type>(n_elem)
matrix_type X = ones<matrix_type>(n_rows, n_cols)
matrix_type Y = ones<matrix_type>(size(X))
cube_type Q = ones<cube_type>(n_rows, n_cols, n_slices)
cube_type R = ones<cube_type>(size(Q))
[[cpp11::register]] doubles_matrix<> ones2_(const int& n) {
vec v = ones(n); // or: vec v(10, fill::ones);
uvec u = ones<uvec>(n);
rowvec r = ones<rowvec>(n);
mat A = ones(n, n); // or: mat A(n, n, fill::ones);
fmat B = ones<fmat>(n, n);
cube Q = ones(n, n, n + 1); // or: cube Q(n, n, n + 1, fill::ones);
mat res = diagmat(v) + diagmat(conv_to<vec>::from(u)) + diagmat(r) + A + B +
Q.slice(0);
return as_doubles_matrix(res);
}
Specifying fill::ones
during object construction is more
compact. For example, mat A(5, 6, fill::ones)
.
The zeros()
function generates a vector, matrix or cube.
The arguments can be n_elem
, n_rows, n_cols
,
n_rows, n_cols, n_slices
, or size(X)
.
The usage is:
vector_type v = zeros<vector_type>(n_elem)
matrix_type X = zeros<matrix_type>(n_rows, n_cols)
matrix_type Y = zeros<matrix_type>(size(X))
cube_type Q = zeros<cube_type>(n_rows, n_cols, n_slices)
cube_type R = zeros<cube_type>(size(Q))
[[cpp11::register]] doubles_matrix<> zeros2_(const int& n) {
vec v = zeros(n); // or: vec v(10, fill::zeros);
uvec u = zeros<uvec>(n);
rowvec r = zeros<rowvec>(n);
mat A = zeros(n, n); // or: mat A(n, n, fill::zeros);
fmat B = zeros<fmat>(n, n);
cube Q = zeros(n, n, n + 1); // or: cube Q(n, n, n + 1, fill::zeros);
mat res = diagmat(v) + diagmat(conv_to<vec>::from(u)) + diagmat(r) + A + B +
Q.slice(0);
return as_doubles_matrix(res);
}
Specifying fill::zeros
during object construction is
more compact. For example, mat A(5, 6, fill::zeros)
.
The randu()
function generates a vector, matrix or cube
with the elements set to random floating point values uniformly
distributed in the [a,b]
interval. The arguments can be
distr_param(a,b)
, n_elem
,
n_elem, distr_param(a,b)
, n_rows, n_cols
,
n_rows, n_cols, distr_param(a,b)
,
n_rows, n_cols, n_slices
,
n_rows, n_cols, n_slices, distr_param(a,b)
,
size(X)
, or size(X), distr_param(a,b)
.
The usage is:
// the scalar type can be: float, double, cx_float, or cx_double
scalar_type s = randu<scalar_type>()
scalar_type s = randu<scalar_type>(distr_param(a,b))
vector_type v = randu<vector_type>(n_elem)
vector_type v = randu<vector_type>(n_elem, distr_param(a,b))
matrix_type X = randu<matrix_type>(n_rows, n_cols)
matrix_type X = randu<matrix_type>(n_rows, n_cols, distr_param(a,b))
cube_type Q = randu<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randu<cube_type>(n_rows, n_cols, n_slices, distr_param(a,b))
[[cpp11::register]] doubles_matrix<> randu3_(const int& n) {
double a = randu();
double b = randu(distr_param(10, 20));
vec v1 = randu(n); // or vec v1(n, fill::randu);
vec v2 = randu(n, distr_param(10, 20));
rowvec r1 = randu<rowvec>(n);
rowvec r2 = randu<rowvec>(n, distr_param(10, 20));
mat A1 = randu(n, n); // or mat A1(n, n, fill::randu);
mat A2 = randu(n, n, distr_param(10, 20));
fmat B1 = randu<fmat>(n, n);
fmat B2 = randu<fmat>(n, n, distr_param(10, 20));
mat res = diagmat(v1) + diagmat(v2) + diagmat(r1) + diagmat(r2) + A1 + A2 +
B1 + B2;
res.each_col([a](vec& x) { x += a; });
res.each_row([b](rowvec& y) { y /= b; });
return as_doubles_matrix(res);
}
To generate a matrix with random integer values instead of floating
point values, use randi()
instead.
The randn()
function generates a vector, matrix or cube
with the elements set to random floating point values normally
distributed with mean 0
and standard deviation
1
. The arguments can be
n_elem, distr_param(mean, stddev)
, n_elem
,
n_elem, distr_param(mean, stddev)
,
n_rows, n_cols
,
n_rows, n_cols, distr_param(mean, stddev)
,
n_rows, n_cols, n_slices
,
n_rows, n_cols, n_slices, distr_param(mean, stddev)
,
size(X)
, or
size(X), distr_param(mean, stddev)
.
The usage is:
// the scalar type can be: float, double, cx_float, or cx_double
scalar_type s = randn<scalar_type>()
scalar_type s = randn<scalar_type>(distr_param(mean, stddev))
vector_type v = randn<vector_type>(n_elem)
vector_type v = randn<vector_type>(n_elem, distr_param(mean, stddev))
matrix_type X = randn<matrix_type>(n_rows, n_cols)
matrix_type X = randn<matrix_type>(n_rows, n_cols, distr_param(mean, stddev))
cube_type Q = randn<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randn<cube_type>(n_rows, n_cols, n_slices, distr_param(mean, stddev))
[[cpp11::register]] doubles_matrix<> randn3_(const int& n) {
vec v1 = randn(n); // or vec v1(n, fill::randn);
vec v2 = randn(n, distr_param(10, 20));
rowvec r1 = randn<rowvec>(n);
rowvec r2 = randn<rowvec>(n, distr_param(10, 20));
mat A1 = randn(n, n); // or mat A1(n, n, fill::randn);
mat A2 = randn(n, n, distr_param(10, 20));
fmat B1 = randn<fmat>(n, n);
fmat B2 = randn<fmat>(n, n, distr_param(10, 20));
mat res = diagmat(v1) + diagmat(v2) + diagmat(r1) + diagmat(r2) + A1 + A2 +
B1 + B2;
return as_doubles_matrix(res);
}
The randg()
function generates a vector, matrix or cube
with the elements set to random floating point values gamma distributed
with shape a
and scale b
. The arguments can be
distr_param(a, b)
, n_elem
,
n_elem, distr_param(a, b)
, n_rows, n_cols
,
n_rows, n_cols, distr_param(a, b)
,
n_rows, n_cols, n_slices
,
n_rows, n_cols, n_slices, distr_param(a, b)
,
size(X)
, or size(X), distr_param(a, b)
.
The usage is:
// the scalar type can be: float, double, cx_float, or cx_double
scalar_type s = randg<scalar_type>()
scalar_type s = randg<scalar_type>(distr_param(a, b))
vector_type v = randg<vector_type>(n_elem)
vector_type v = randg<vector_type>(n_elem, distr_param(a, b))
matrix_type X = randg<matrix_type>(n_rows, n_cols)
matrix_type X = randg<matrix_type>(n_rows, n_cols, distr_param(a, b))
cube_type Q = randg<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randg<cube_type>(n_rows, n_cols, n_slices, distr_param(a, b))
[[cpp11::register]] doubles_matrix<> randg3_(const int& n) {
int a = randi();
int b = randi(distr_param(-10, +20));
imat A1 = randi(n, n);
imat A2 = randi(n, n, distr_param(-10, +20));
mat B1 = randi<mat>(n, n);
mat B2 = randi<mat>(n, n, distr_param(-10, +20));
mat res = A1 + A2 + B1 + B2;
res.each_col([a](vec& x) { x *= a; });
res.each_row([b](rowvec& y) { y -= b; });
return as_doubles_matrix(res);
}
The randi()
function generates a vector, matrix or cube
with the elements set to random integer values uniformly distributed in
the [a,b]
interval. The arguments can be
distr_param(a, b)
, n_elem
,
n_elem, distr_param(a, b)
, n_rows, n_cols
,
n_rows, n_cols, distr_param(a, b)
,
n_rows, n_cols, n_slices
,
n_rows, n_cols, n_slices, distr_param(a, b)
,
size(X)
, or size(X), distr_param(a, b)
. The
default values are a = 0
and
b = maximum_int
.
The usage is:
scalar_type s = randi<scalar_type>()
scalar_type s = randi<scalar_type>(distr_param(a, b))
vector_type v = randi<vector_type>(n_elem)
vector_type v = randi<vector_type>(n_elem, distr_param(a, b))
matrix_type X = randi<matrix_type>(n_rows, n_cols)
matrix_type X = randi<matrix_type>(n_rows, n_cols, distr_param(a, b))
cube_type Q = randi<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randi<cube_type>(n_rows, n_cols, n_slices, distr_param(a, b))
[[cpp11::register]] integers_matrix<> randi3_(const int& n) {
uvec v1 = randi(n); // or uvec v1(n, fill::randi);
uvec v2 = randi(n, distr_param(10, 20));
umat A1 = randi(n, n); // or umat A1(n, n, fill::randi);
umat A2 = randi(n, n, distr_param(10, 20));
icube Q1 = randi(icube(n, n, n + 1)); // or icube Q1(n, n, n + 1, fill::randi);
icube Q2 = randi(icube(n, n, n + 1), distr_param(10, 20));
mat res = diagmat(conv_to<vec>::from(v1)) + diagmat(conv_to<vec>::from(v2)) +
A1 + A2 + Q1.slice(0) + Q2.slice(0);
return as_integers_matrix(res);
}
To generate a matrix with random floating point values (e.g., float
or double) instead of integers, use randu()
instead.
The speye()
function generates a sparse matrix of size
n x n
with the elements on the diagonal set to
1
and the remaining elements set to 0
. The
argument can be n_rows, n_cols
or size(X)
. An
identity matrix is generated when n_rows = n_cols
.
The usage is:
The spones(X)
function generates a sparse matrix with
the same size as X
and all the non-zero elements set to
1
.
The sprandu()
function generates a sparse matrix of size
n_rows x n_cols
with random floating point values uniformly
distributed in the [0,1]
interval. The arguments can be
n_rows, n_cols, density
or
size(X), density
.
The usage is:
The sprandn()
function generates a sparse matrix of size
n_rows x n_cols
with random floating point values normally
distributed with mean 0
and standard deviation
1
. The arguments can be
n_rows, n_cols, density
or
size(X), density
.
The usage is:
The toeplitz()
function generates a toeplitz matrix. The
arguments can be a
or a, b
, where
a
is a vector that determines the first column and
b
is an optional vector that determines the first row.
Alternatively, circ_toeplitz()
generates a circulant
toeplitz matrix.