Package: capybara 0.9.0

capybara: Fast and Memory Efficient Fitting of Linear Models with High-Dimensional Fixed Effects

Fast and user-friendly estimation of generalized linear models with multiple fixed effects and cluster the standard errors. The method to obtain the estimated fixed-effects coefficients is based on Stammann (2018) <doi:10.48550/arXiv.1707.01815> and Gaure (2013) <doi:10.1016/j.csda.2013.03.024>.

Authors:Mauricio Vargas Sepulveda [aut, cre]

capybara_0.9.0.tar.gz
capybara_0.9.0.zip(r-4.5)capybara_0.9.0.zip(r-4.4)capybara_0.9.0.zip(r-4.3)
capybara_0.9.0.tgz(r-4.5-x86_64)capybara_0.9.0.tgz(r-4.5-arm64)capybara_0.9.0.tgz(r-4.4-x86_64)capybara_0.9.0.tgz(r-4.4-arm64)capybara_0.9.0.tgz(r-4.3-x86_64)capybara_0.9.0.tgz(r-4.3-arm64)
capybara_0.9.0.tar.gz(r-4.5-noble)capybara_0.9.0.tar.gz(r-4.4-noble)
capybara.pdf |capybara.html
capybara/json (API)
NEWS

# Install 'capybara' in R:
install.packages('capybara', repos = c('https://pachadotdev.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/pachadotdev/capybara/issues

Pkgdown site:https://pacha.dev

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

Conda:

cpp11econometricslinear-modelsopenblascppopenmp

6.07 score 13 stars 12 exports 34 dependencies

Last updated 9 hours agofrom:fc58c42812. Checks:12 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-win-x86_64OKMar 25 2025
R-4.5-mac-x86_64OKMar 25 2025
R-4.5-mac-aarch64OKMar 25 2025
R-4.5-linux-x86_64OKMar 25 2025
R-4.4-win-x86_64OKMar 25 2025
R-4.4-mac-x86_64OKMar 25 2025
R-4.4-mac-aarch64OKMar 25 2025
R-4.4-linux-x86_64OKMar 25 2025
R-4.3-win-x86_64OKMar 25 2025
R-4.3-mac-x86_64OKMar 25 2025
R-4.3-mac-aarch64OKMar 25 2025

Exports:apesaugmentautoplotbias_corrfeglmfeglm_controlfelmfenegbinfepoissonfixed_effectsglancetidy

Dependencies:clicolorspacecpp11cpp11armadillodata.tablefansifarverFormulagenericsggplot2gluegtableisobandkendallknightlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Poisson Pseudo-Maximum Likelihood (PPML) Model with Cluster-Robust Standard Errors

Rendered fromintro.Rmdusingknitr::rmarkdownon Mar 25 2025.

Last update: 2024-07-06
Started: 2024-07-06